
1.  Introduction
The coronal mass ejections and corotating interaction regions are considered the main sources of geomagnetic 
storm (Mursula et al., 2022). During these events, the enhanced solar wind efficiently couples with the Earth's 
magnetic field. The resulting ground magnetic field variations increase the errors of systems that use the Earth's 
natural magnetic field as a pointing reference. The Dst or disturbance-storm-time index is a measure of the severity 
of the geomagnetic storm (e.g., Gonzalez et al., 1990). Geomagnetic storms can disrupt satellite  communications, 
Global Positioning System  navigation systems, compass-based pointing systems, and power grids, leading to 
widespread blackouts and disruptions in communication. As a key specification of the magnetospheric dynamics, 
the Dst index is used to drive geomagnetic disturbance models such as National Oceanic and Atmospheric Admin-
istration (NOAA)/NCEI's High Definition Geomagnetic Model—Real Time (HDGM-RT). The HDGM-RT is a 
global, high-resolution model of the Earth's geomagnetic main, crustal, and external field, providing magnetic 
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field values (total field, dip, and declination) at or near the Earth's surface. The HDGM (Nair et al., 2021) is 
updated annually to correctly model secular changes in the geomagnetic field. The HDGM-RT is developed by 
the US NOAA, in partnership with the directional drilling industry and the University of Colorado. The external 
field of the HDGM-RT is a sum of ionospheric and magnetospheric components derived from an annually updated 
diurnal magnetic variation model (Chulliat et al., 2013, 2016) and the POMME model (Maus et al., 2010; Maus 
& Lühr, 2005). Additionally, magnetic surveyors, government agencies, academic institutions, satellite operators, 
and power grid operators use the Dst index to analyze the strength and duration of geomagnetic storms.

The Dst is calculated as an average value of the horizontal component (H) of the magnetic field observed at four 
near-equatorial observatories (Hermanus, Kakioka, Honolulu, and San Juan), which are far from the auroral and 
equatorial electrojets and are located roughly evenly distributed in longitude (Sugiura, 1963). The Dst is calculated 
using the following steps. First, a baseline is determined for H at each observatory using a quadratic polynomial 
model based on the annual means of the previous 6 years and then subtracted from H at each observatory. The 
solar quiet daily variation (Sq) is estimated for each observatory by fitting the Fourier series (for local time and 
month). The disturbance variation at each observatory is calculated by further subtracting the Sq from the baseline 
adjusted H. Finally, the Dst index is obtained by averaging the disturbance variation of four observatories, taking 
into account their latitude in geomagnetic dipole coordinates at every Universal-Time (UT) hour. The range of the 
Dst index is generally about −400 to +100 nT (nanoTeslas), with large negative values indicating a geomagnetic 
storm. Extremely intense storms can cause the Dst index to drop below −500 nT. A typical geomagnetic storm can 
last a few days and can be generally described in three phases. The initial phase, if present, can have short periods 
(1–3 hr) of positive Dst values due to the sudden compression of magnetosphere. The main phase of a geomagnetic 
storm can last from a few hours to as long as 24 hr or more, when Dst reaches its lowest values. The recovery phase 
is characterized by a gradual increase in the Dst index toward its normal or baseline level and typically lasts from 
several hours to a few days. The observed Dst is the sum of the magnetic fields from external (Est, ring current) 
and internal (Ist, induced counterpart) sources. For driving models such as HDGM-RT, the Est is separated from 
Dst by using a method described by Maus and Weidelt (2004). The World Data Center (WDC) Kyoto (Japan) 
provides the official Dst index (Sugiura,  1963) at three processing levels: Final, Provisional, and Quicklook. 
Currently, the Final version is available through the year 2016 and is their most-processed version, using definitive 
magnetic field data. The Provisional version is available for the years 2017–2019 and uses preliminary magnetic 
field data. Quicklook is their near real-time version. All of these processing levels are available with a 1-hr time 
resolution. For real-time operations purposes, the Quicklook Dst is often used.

Empirical models have been proposed as early as 1975 (Burton et al., 1975) to forecast Dst solely from solar wind 
observations at the Lagrangian (L1) position. Several models were proposed for solar wind forecasting of Dst. They 
include empirical (e.g., Bala & Reiff, 2012; Burton et al., 1975; Lundstedt et al., 2002; O'Brien & McPherron, 2000; 
Temerin & Li, 2002) and physics-based (e.g., Raeder et al., 2001; Tóth et al., 2005) models. The Geospace Envi-
ronment Modeling challenge of 2008–2009 asked modelers to submit Dst results for four geomagnetic storm events 
and five types of observations that can be modeled by empirical, climatological, or physics-based models of the 
magnetosphere-ionosphere system (Rastätter et al., 2013). The results showed that during the peak of geomagnetic 
storms, empirical models (including a neural network-based model) performed better than physics-based models. 
However, empirical models struggled to accurately predict the “quiet-time” Dst baselines. Over the past decade, vari-
ous machine-learning (ML) based Dst specification models have been proposed (Chandorkar et al., 2017; Cristoforetti 
et al., 2022; Gruet et al., 2018; Laperre et al., 2020; Lazzús et al., 2017; Tasistro-Hart et al., 2021) as an improvement 
over traditional Dst models. All of these examples except Lazzús et al. used solar wind data to forecast Dst. And most 
of these past efforts relied on prior Dst timesteps for the forecast step, which is generally not available in real-time.

Despite the large amount of research in Dst forecasting, it is difficult to compare different prediction methods 
against each other. Researchers implement their prediction methods using a subset of data, using specific compu-
tational platforms and optimized for certain periods of solar cycles. While most of these efforts aim to accurately 
predict the Dst values, their use in real-time operational environments is limited by three factors. (a) Most models 
use the prior Dst values as input (in addition to the solar wind parameters) to predict the future Dst values. However, 
the aforementioned Quicklook Dst is derived from unverified raw data, and it often contains inaccurate values 
caused by spikes, noise, and baseline shifts. In general, the Quicklook Dst is available with a latency of about 
2 hr. However, there is no guaranteed latency for the Quicklook Dst, and it can be delayed by several hours. In 
Figure 1, we plot the Quicklook Dst (real-time) and the provisional Dst (released about a year later) for 1 June 
2020, through 10 August 2020. For the entire period of July 2020, the Quicklook Dst had a mean bias error of about 
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−25 nT. Hence, the operational dependency of a model on prior Dst values is 
detrimental to their forecasting reliability. (b) Most of the models are devel-
oped using solar wind data available from the NASA OMNI website (e.g., 
Papitashvili & King, 2020). These data sets are often “time-shifted” to account 
for travel time to the magnetosphere's bow shock nose (from their measure-
ment location at L1) and have undergone processing to remove noise and 
other non-geophysical contamination (NASA, 2022). Additionally, the OMNI 
data set may contain data from non-operational satellites such as WIND. In 
contrast, the Real-Time Solar Wind (RTSW) data from NASA Advanced 
Composition Explorer (ACE) and NOAA DSCOVR satellites are provided 
without being time-shifted and may contain noise, data gaps, and spikes owing 
to sensor and processing system malfunctions. Ideally, a real-time Dst predic-
tor should internalize the time shift/propagation delay. (c) The models should 
be able to be run in an operational environment with limited, operationally 
approved computational resources and using the operational “Real-Time Solar 
Wind” (RTSW, Zwickl et al., 1998) data stream. Thus, for operational use, it is 
important to develop a model that (a) does not depend on the past Dst values, 
(b) is agnostic to the noise and data gaps in the RTSW data, and (c) can run on 
a specific computational environment using RTSW data sets.

1.1.  Why a Data Science Competition?

We attempted to solve this problem by conducting an open competition 
among data scientists. We are motivated by this question: Can data scientists 

with or without prior training in geophysics improve Dst forecasting? We were optimistic for three reasons. First 
is that competition platforms such as Kaggle, TopCoder, and DrivenData have demonstrated how data science 
can be successfully outsourced to people without domain expertise. Many organizations have run competitions 
on such diverse topics as right  whale  identification (Bogucki et  al.,  2019), optimizing  flight  routes, predict-
ing ocean health, and diabetic detection (Graham, 2015). To our knowledge, this is the inaugural instance of a 
data science competition being conducted to address a problem in the field of space physics. Data scientists with 
little or no expertise in the domain have responded brilliantly with useful solutions. Second is that the democra-
tization of data-science tools and the availability of cloud-based resources for modeling enabled more people to 
take part in such competitions. For example, machine-learning frameworks such as TensorFlow and PyTorch are 
open-source and publicly available. Serious machine-learning model development is possible using free online 
notebooks such as Google's Colaboratory—a browser-based front-end editor with a cloud-based backend for data 
processing. Finally, data-science platforms attract scientists and engineers with prize money and the prestige of 
winning the competition. More importantly, their leaderboards have become central to job placement in the data 
science industry (Martinez & Walton, 2014). Another advantage of soliciting modeling solutions from a wider 
pool of solvers (as against using in-house developers) is that the former has the potential to bring in a diverse 
set of strategies to achieve the same goal. Specifically, it is known that using an ensemble of diverse models is 
often better than relying on individual models (e.g., Boukabara et al., 2020; Riley et al., 2013; Weyn et al., 2021). 
An open data science competition has the potential to provide several high-quality models but using different 
modeling strategies. The NOAA National Centers for Environmental Information (NCEI), in partnership with 
the University of Colorado's Cooperative Institute for Research in Environmental Sciences (CIRES) and the 
NASA Center of Excellence for Collaborative Innovation (CoECI), conducted an open data science challenge 
“MagNet” to forecast Dst using the solar wind data from 15 December 2020, through 12 February 2021, aligned 
with NOAA's new Artificial Intelligence Strategic goals to advance AI research and strengthen and expand part-
nerships (NOAA, 2021). The competition was implemented by DrivenData and HeroX. We describe the data sets 
provided to the competitors in Section 4, the competition progress in Sections 5 and 6, and the evaluation of the 
top models in Section 7. Using a post-competition RTSW data set (March 2021 through May 2022), we assess 
the performance of the top models in Section 5, well after the competition was completed with newer geophysical 
data.

Figure 1.  A comparison of the real-time, “Quicklook” Dst (less accurate) and 
provisional Dst (more accurate). The provisional Dst, released typically with 
1-year latency does not contain the baseline errors seen in the Quicklook Dst.

https://www.kaggle.com/c/noaa-right-whale-recognition
https://www.kaggle.com/c/flight2-main/leaderboard
https://www.kaggle.com/c/datasciencebowl
https://www.kaggle.com/c/datasciencebowl
https://www.kaggle.com/c/diabetic-retinopathy-detection
https://www.tensorflow.org/
https://pytorch.org/
https://colab.research.google.com/
https://www.drivendata.org/
http://www.herox.com/
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2.  Pre-Competition Phase
The proposal for the “MagNet” challenge was competitively selected for funding through the 2020 NCEI Inno-
vates program The program is designed to encourage exploration and cross-center interaction that could result 
in outcomes that help NCEI achieve its missions. Since NOAA/NCEI does not have a mechanism for conducting 
the competition, an Interagency Agreement (IAA) was signed with NASA. In fulfillment of the IAA, the NASA 
Tournament Lab selected DrivenData as the competition platform provider through an open process. Regular 
meetings were held between DrivenData, NCEI, and NASA in preparation for the competition to finalize the 
data sets, performance metrics, competition rules, and judgment criteria. Before the competition set dates, the 
outreach team of HeroX reached out to the data-scientist community. The NCEI/CIRES team communicated 
the opportunity with the space-physics community via emails and personal contacts. The concept of the chal-
lenge was presented and discussed at the Workshop on ML, Data Mining, and Data Assimilation in Geospace 
(LMAG2020) in the fall of 2020. The authors of recent papers on Dst forecasting were directly contacted to 
encourage their participation.

3.  Problem Statement
Figure 2 shows an overview of the problem statement. Given the 1-min averages of RTSW solar wind data for the 
past 1 week, along with the optional satellite position and sunspot data predict the Dst values at present and 1 hr 
in the future (t0 and t+1). Note that the RTSW data may contain gaps and noise, so the solvers will need to come 
up with strategies to deal with them.

4.  Data Set for the Competition
The following section describes the “official” data set provided to the competition.

4.1.  Solar-Wind Data

The input data for the modeling challenge are the solar wind data measured by NASA's ACE (launched in 
1997) and NOAA's Deep Space Climate Observatory (DSCOVR, launched in 2015), situated at approximately 
1.6 million kilometers from the Earth and orbiting the Lagrangian (L1) position. The L1 point is a neutral gravity 

Figure 2.  Given 1-min averages of Real-Time Solar Wind (RTSW) measurements in the window t−N to t0, where N is 7 × 1,440 corresponding to 1 week of 1-min 
averages, predict Dst, at t0 and t+1. The historical solar wind data are shaded in green and the Dst prediction is given in blue. The RTSW data used for the competition 
may contain gaps and errors.
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point between the Sun and the Earth that is about a hundredth of the distance to the Sun. L1 is a good position 
from which to monitor the Sun because the constant stream of particles from the Sun (the solar wind) reaches 
L1 about an hour before reaching the Earth. The solar wind data consists of in situ measurements of magnetic 
field and plasma. Specifically, we use the “Real-Time Solar Wind” (RTSW) product of NOAA's Space Weather 
Prediction Center (SWPC), in 1-min averages, for the years 1998 through 2020. The RTSW data for the past 
7  days are available, in real-time, from the website https://services.swpc.noaa.gov/products/solar-wind/. The 
RTSW data older than 7 days are available on request from SWPC. The RTSW data include the interplanetary 
magnetic field (IMF), solar wind speed, density, and temperature measurements transmitted from the L1 position 
in near real-time. The RTSW product is delivered, in real-time by SWPC and is used for space-weather oper-
ational models such as the Coupled Thermosphere Ionosphere Plasmasphere Electrodynamics Model (CTIPe, 
Codrescu et al., 2012) and the Prompt-Penetration Electric Field Model (PPEFM, Manoj & Maus, 2012). Unlike 
the solar wind data provided by NASA's OMNI website–commonly used for developing Dst forecasting models–
the RTSW data is not time-shifted from L1 to the bow-shock nose of the magnetosphere. During times of outage 
or other problems in DSCOVR data, SWPC uses data from the NASA/ACE spacecraft. Hence, at any point 
in time (starting in 2016), the RTSW may source data from ACE or DSCOVR and they are indicated as such. 
Table 1 provides a summary of the solar wind data set used in this modeling challenge.

4.2.  Spacecraft Position Data

The ACE and DSCOVR satellites are not stationary at the L1 point. They orbit around the L1 point, in a rela-
tively constant position to the Earth as the Earth revolves around the Sun. The positional information might give 
additional improvements to the forecasting of the Dst values. The daily positional information of the satellites in 
Geocentric solar ecliptic Coordinates are described in Table 2.

Variable 
ID Variable Description Units Min/Max

1 time_delta Time delta from the start of a segment, for example, 27 days 08:00:00 –

2 bx_gse Interplanetary magnetic field (IMF) X-component in Geocentric solar ecliptic (GSE) 
coordinates

nT −200/+200

3 by_gse Interplanetary magnetic field Y-component in GSE coordinates nT −200/+200

4 bz_gse Interplanetary magnetic field Z-component in GSE coordinates nT −200/+200

5 theta_gse Interplanetary magnetic field latitude in GSE coordinates (defined as the angle between the 
magnetic vector B and the ecliptic plane, being positive when B points North)

Degrees −90/90

6 phi_gse Interplanetary magnetic field longitude in GSE coordinates (the angle between the 
projection of the IMF vector on the ecliptic and the Earth-Sun direction)

Degrees 0/360

7 bx_gsm Interplanetary magnetic field X-component in Geocentric solar magnetospheric (GSM) 
coordinates

nT −200/+200

8 by_gsm Interplanetary magnetic field Y-component in GSM coordinates nT −200/+200

9 bz_gsm Interplanetary magnetic field Z-component in GSM coordinates nT −200/+200

10 theta_gsm Interplanetary magnetic field latitude in GSM coordinates Degrees −90/90

11 phi_gsm Interplanetary magnetic field longitude in GSM coordinates Degrees 0/360

12 bt Interplanetary magnetic field magnitude nT 0/200

13 MAG Source Starting in 2016, the solar wind data at any timestamp can be sourced from either DSCOVR 
or ACE satellites depending on availability and quality. Plasma and MAG source 
vectors are the same.

1 = ACE, 2 = DSCOVR 1/2

14 Density Solar wind proton density N/cm 3 0/200

15 Speed Solar wind bulk speed km/s 200/2,000

16 Temperature Solar wind ion temperature Degrees K 1.00E4/1.00E7

17 Plasma Source Starting in 2016, the solar wind data at any timestamps can be sourced from either 
DSCOVR or ACE satellites depending on the quality

1 = ACE, 2 = DSCOVR 1/2

Table 1 
Solar Wind Data Available for Use in the Modeling Challenge

https://services.swpc.noaa.gov/products/solar-wind/
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4.3.  Sunspot Numbers

The Sun exhibits a well-known, periodic variation of the number of spots on its disk over a period of about 
11 years. The solar wind data set provided to the competition spans Solar Cycles 23 and 24. In general, geomag-
netic storms occur more frequently during the descending phase of these cycles, with a secondary enhancement 
of this peak at the late ascending phase of the cycle (Gonzalez et al., 1990). Using sunspot numbers might provide 
a calibration to the models which are trained in particular periods of the solar cycle to provide accurate predic-
tions on other parts of the solar cycle.

The monthly sunspot numbers (smoothed) for the years January 1998 through December 2021, obtained from SWPC 
data are described in Table 3.

4.4.  Dst Data

The WDC for Geomagnetism in Kyoto is the official producer of the Dst values. We use their Dst data at 1-hr 
intervals from 1998 to 2020 for the challenge. The Dst data for the years 1998 through 2014 were “final,” 2015 
through 2016 were “provisional” and 2017 through 2020 were “real-time.” Note that while quicklook data are, 
at times, unusable in real-time, the WDC corrects them retroactively. Hourly Dst values are defined as the true 
average of the measured values spanning the minute values of 1 hr (Jankowski & Sucksdorff, 1996). Note that the 
minute values are centered on the whole minute, while the hourly values are centered on the middle. Thus, the 
first Dst value of a day (00:00:00 UTC) covers the measurements between 00:00:30 UTC to 01:00:30 UTC and 
so forth. When a model is asked to forecast Dst values at a specific hour, say at 10:00:00 UTC, the model uses the 
solar wind data collected up until this time and forecasts the Dst at 10:00:00 a.m., which represents the average 
of ground measurements between 10:00:30 UTC and 11:00:30 UTC. Thus the model forecast is a true forecast, 
forward in time.

An important step in ML model development and a basic tenet of explainable AI (XAI) is feature exploration. 
Figure 3 depicts the instantaneous correlation values between sunspot number and solar wind parameters and Dst 
across the complete training data set (Table 4, Figure 4). It is immediately apparent that as expected, |Dst| is well 
correlated with solar wind speed. The highest four correlations with |Dst| in this data set are solar wind speed 
(0.46), IMF magnitude Bt (0.31), temperature (0.25), and IMF Zgsm (0.20). It's also clear that generally, Dst is 
uncorrelated with the locations of the ACE and DSCOVR spacecraft (i.e., “gse_*_ace,” “gse_*_dscovr”). As we 
explore potential ML model architectures and parameterizations, we should expect the most performant models 
to be generally more sensitive to these parameters and less sensitive to others. We will touch more on post-model 
ad-hoc XAI in Section 7.

Variable ID Variable Description Unit Min/Max

23 time_delta Time delta from the start of a segment, for example, 15 days 00:00:00 –

24 smoothed_ssn Monthly sunspot numbers, smoothed a Numbers 1.8/180.3

 aNote that data after April 2020 are predicted by a model.

Table 3 
Smoothed Sunspot Numbers for January 1998 Through December 2021

Variable ID Variable Description Unit Min/Max

18 time_delta Time delta from the start of a segment, for example, 27 days 08:00:00 – 16 February 1998 00:00:00.000/10 
November 2020 05:29:00.000

19 GSE_X (km) Position of the satellite in the X direction of GSE coordinates Kilometers 85,516/1,594,772

20 GSE_Y (km) Position of the satellite in the Y direction of GSE coordinates Kilometers −475,678/267,959

21 GSE_Z (km) Position of the satellite in the Z direction of GSE coordinates Kilometers −161,542/164,061

Table 2 
Spacecraft Location Available for Use in the Modeling Challenge

https://www.swpc.noaa.gov/products/solar-cycle-progression
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5.  Data Preparation for the Competition
We divided the data sets into six parts, with only training segments being 
open to the competitors. The start and end times of each of the subsegments 
are given in the following Table 4. While dividing the data, we made sure to 
include energetic parts of the solar cycle in both private and public sections. 
Within each segment, the original timestamps were replaced with timestamps 
relative to the beginning timestamps for that section to obfuscate the actual 
timestamps. Note that this process did not change the order and hence did not 
violate the causality of the time series.

The competitors used the training part (“train_a,” “train_b” and “train_c”) 
data to develop and improve their models. When they submitted a model, 
the competition platform used the test data sets (“test_a,” “test_b,” and 
“test_c”) to calculate the accuracy of the model. Figure  4 depicts the 
sequences of training and test data periods alongside the Dst and sunspot 
time series. To impede competitors from accessing the publicly availa-
ble Dst values, we obfuscated the timestamps. We also took measures to 
prevent the leakage of chronological information by randomly assigning 
period names. These precautions were deemed unnecessary for the private 
test data, as it was only accessible within the code execution harness. 
The model evaluation was done separately for a public leaderboard and 
a private leaderboard. The public leaderboard was openly accessible 
whereas the private leaderboard was restricted to the competition admin-
istrators. The data from all of the test sets (a, b, and c) were used on the 

public leaderboard and private leaderboards. We randomly sampled rows to be included in the public and 
private leaderboards. Based on relative performance from the public leaderboard as a clue, the teams iterated 
their models. The private leaderboard provides an unbiased and accurate ranking of the participants' models 
based on their performance on the withheld test data. Using all data may cause participants to overfit their 
models to the specific patterns in the public test data. Hence, the final ranking of the models was done on the 
private leaderboard.

6.  Competition
6.1.  Benchmark Model

We created a benchmark Dst model and a tutorial to aid participants in the competition. The tutorial covers 
topics such as data correlation, feature selection, and managing gaps and noise in the data. The model uses 
a simple Long-Short Term Memory (LSTM) neural network architecture, which is explained in Hochreiter 
and Schmidhuber's  (1997) work. You can access the tutorial through this link: https://drivendata.co/blog/
model-geomagnetic-field-benchmark.

Figure 3.  Correlations between sunspot number and solar wind parameters, 
and Dst is shown as a heat map. The color scale shown range is [−1, +1] 
representing maximally anti-correlated to maximally correlated. The x- and 
y-axes are the same, with solar parameters occupying the first 21 columns/
rows and Dst the last.

Period Beginning End

train_a 1998, 2, 16, '00:00:00' 2001, 5, 31, '23:59:00'

train_b 2013, 6, 1, '00:00:00' 2019, 5, 31, '23:59:00'

train_c 2004, 5, 1, '00:00:00' 2010, 12, 31, '23:59:00'

test_a 2001, 6, 1, '00:00:00' 2004, 4, 30, '23:59:00'

test_b 2011, 1, 1, '00:00:00' 2013, 5, 31, '23:59:00'

test_c 2019, 6, 1, '00:00:00' 2020, 10, 31, '23:59:00'

Note. The format for the timestamp is YYYY, MM, DD 'HH:MM:SS'.

Table 4 
The Beginning and End Timestamps of the Data Sections

https://drivendata.co/blog/model-geomagnetic-field-benchmark
https://drivendata.co/blog/model-geomagnetic-field-benchmark
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6.2.  Real-Time Containerized Testing Environment

For the competition, solvers were required to submit the model files along with the code to make predictions, to 
a containerized code execution environment. The container had access to four vCPUs and 14 GB RAM but no 
Graphical Processing Units or network access. The container execution did not have root access to the filesystem. 
The container was a shared resource, so the solvers were required to be conscientious in their use of resources by 
adding progress information to their logs and canceling jobs that would run longer than the time limit. All neces-
sary files (forward prediction, model files, etc.) were required to be in the submission. The submissions were to be 
zip archives named with the extension.zip, containing a “predict.py” file that implements a function “predict_dst” 
in Python language. This function should be able to make predictions for the current hour t0 and the hour after that 
t+1 using up to 7 days' worth of RTSW data. While it is acknowledged that the magnetosphere prior to 7 days can 
have an impact on the predictions, the immediate and recent changes are likely to have a more direct influence 
on the Dst values. By providing a reasonable window of past data, participants can develop models that offer 
accurate predictions while still being computationally efficient enough for real-time applications. The solver had 
to choose a sensible way to handle missing values and noisy data. The models were automatically evaluated upon 
submission and the scores for public and private leaderboards were generated. The submissions were required to 
complete the execution within 8 hr, and no single prediction could take more than 30 s.

6.3.  Performance Metric

We needed a simple and intuitive error metric that can be used to evaluate the performance of the models in the 
leaderboard. We chose the root-mean-square error (RMSE) of the residuals between predicted and observed Dst 
values as the metrics for model performance.

RMSE =

√

√

√

√

1

𝑛𝑛

𝑛𝑛
∑

𝑖𝑖=1

(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖)
2
,� (1)

where

•	 �𝐴𝐴 𝐴𝐴𝐴𝑖𝑖 is the estimated Dst values t0 and t+1
•	 �yi is the observed Dst for t0 and t+1
•	 �n is the number of samples

While we acknowledge that there exist several error metrics to choose from (multiple skill scores evaluation of 
Dst models is discussed in Rastätter et al., 2013), we have opted for RMSE for several reasons. First, we want 
to ensure that our model is sensitive to rare, large events, and squaring the errors during RMSE calculation 
amplifies the impact of such events. This is crucial as large errors can significantly affect the model's accuracy. 
Additionally, RMSE is widely used in scientific literature, enabling us to compare our model's performance to 
those previously published. Moreover, RMSE measures the average error magnitude in the dependent variable's 
units, making it straightforward to interpret model performance. Finally, being a differentiable function, RMSE 
can be utilized in ML algorithms that depend on gradient descent to optimize their parameters. This makes it a 
favored loss function for ML algorithms that minimize error through gradient descent.

Figure 4.  The plot shows the solar activity as the sunspot number (SSN) (red), the geomagnetic storm index Dst (blue), and the public and private data segments (top 
labels). The time range shown is January 1998 through December 2022.
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6.4.  Competition Rules

To ensure fairness and adherence to competition rules, DrivenData estab-
lished the following guidelines for participants. First, signing up for multiple 
accounts and submitting entries from different accounts was strictly prohib-
ited. Second, privately sharing code or data outside of teams was also not 
allowed. In addition, winning solutions had to be made available under the 
MIT License, which is an open-source software license commonly described 
at https://opensource.org/licenses/MIT, to be eligible for recognition and 
prize money if offered. Moreover, the use of external data was strictly prohib-
ited, and any attempt to circumvent submission limits resulted in disqualifi-
cation. Additionally, employees and contractors affiliated with DrivenData 
and NOAA/CIRES were not eligible to win a prize. Participants were limited 
to a maximum of three submissions per week. This was partly due to resource 
constraints in the containerized execution environment, and more signifi-
cantly to discourage overfitting, encourage local testing, and give participants 
ample time to iterate and enhance their models. Lastly, the winning solutions 

had to be documented using a Winning Model Documentation Template provided to top-ranking participants to 
be eligible for recognition and prize money if offered.

6.5.  Competition Progress

The extensive engagement with the data science and space-physics community resulted in 5,448 visitors to the 
competition site from 105 countries. Out of these visitors, 622 participants joined the challenge from 64 coun-
tries (Figure 5). Top countries by the number of participants: USA (22%) India (18%) Russia (9%), France (5%), 
Germany (3%), China (3%), UK (3%), Australia (3%), Nepal (2%), Canada (2%), other (30%). Since the contain-
erized code submission and execution required higher than usual requirements for results submission, only 112 
participants made it all the way through successful code submissions. Each participant (or team) was allowed to 
submit three models per week, and a total of 1,197 model submissions were generated.

Throughout the competition, the solvers submitted the models to DrivenData's model containers. On successful 
submissions of a model, two scores are generated. The model is evaluated against a portion of the test data (See 
Figure 4) to create a score (RMSE error) for the public board and the model is separately evaluated against 
another part of the test data to create a private scoreboard. The competition winners were selected on the private 
score. The public scoreboard is visible to all participants, whereas the private scoreboard is only visible to the 
competition administrators. This arrangement is to encourage the solvers to generalize their model. For example, 
if the solver is primarily focused on reducing the public score, their model might not perform equally well on the 
private data set. Figure 6 shows the evolution of the best public and private scores (weekly) over the course of the 
competition. The scores show a sudden decrease in the second week, followed by a gradual reduction to RMSE 
11.1 nT on the private score by the winning model at the end of the competition. One often sees the top score to 
date improve quickly at the beginning of the competition once participants have had time to implement and train 
initial modeling approaches, then improve more gradually as they explore the performance boundary given the 

Figure 5.  Country affiliations of the 622 participants of the competition.

Figure 6.  Progress of the best scores (root mean square error, the lower the better) on public and private leaderboards over 
the course of the competition. Benchmark model achieved an root mean square error of 15.2 nT on the private leaderboard 
and 16.3 on the public leaderboard.

https://opensource.org/licenses/MIT
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data and signal. Another example from a competition to classify penguins is available here https://drivendata.co/
blog/aleatoric-limit1.

A snapshot of the final leaderboard is provided in Figure 7. The leaderboard shows the username, private RMSE 
score, timestamps of their best model submission, and a trend of their RMSE errors over the course of their 
competition participation. The top winners submitted more than 17 models, achieving final RMSEs of 11.13, 
11.25, 11.29, and 11.53 nT in their order of ranking. The very low spread of their scores is typical of data-science 
competitions, where the ranking is typically determined by fractions of the score values.

7.  Winning Models
In the remainder of this paper, we will focus on the top four winning models, selected by their RMSE errors on 
the private leaderboard. A summary of the models, number of parameters, and model architecture is provided in 
Table 5.

While all the top models achieved RMSE on the private data between 11.13 and 11.53 nT, they used a diverse set 
of strategies to achieve that. The models differed in the architecture, input data used, length of the data streams, 
and the number of parameters they needed to obtain the final results.

7.1.  First Place Model Architecture and Data Pre-Processing

The model consists of a Bidirectional LSTM layer followed by a bidirectional Gated Recurrent Unit (GRU, Cho 
et al., 2014) layer. These layers process each timestep in sequence, and each output is combined with the next 
step's input. The LSTM and GRU cells contain “forget gates” which allow old data to be discarded when it is no 
longer relevant while preserving relevant data indefinitely. This allows it to process long sequences without the 
error gradients “exploding” (becoming very large, due to repeated application of a nonlinear function to an input), 
which was a problem in older recurrent neural network architectures.

The LSTM architecture is more complex and requires more parameters than the GRU, so a smaller number of 
units are used in the LSTM to keep the computation feasible.

Figure 7.  Final private leaderboard.

Rank
Private score RMSE 

(nT)
Number of 
parameters ML model/method

Input variables used 
(IDs from Tables 1–3)

1 11.13 60 million Bidirectional LSTM-GRU; three Flattening Layer; three Dense Layers 2–12,14–16,24

2 11.25 51,191 Ensemble of five convolutional models (CNN) 7,8,9,12,14,15,24

3 11.3 34,354 Ensemble: 1 Light Gradient-boosted Model (LGBM), 2 Feed-forward Neural Networks 7–10,14–16,19–21,24

4 11.53 2.6 million Ensemble of 21, 4-block deep Convolutional Neural Networks (CNN) 7–10,14–16,19–21,24

Table 5 
Winning Model Rank and Machine Learning Architecture

https://drivendata.co/blog/aleatoric-limit1
https://drivendata.co/blog/aleatoric-limit1
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Data is aggregated into 1-hr periods, and the mean and standard deviation of the input features are taken for each 
period. The model uses the 128 hr before prediction time (i.e., around 5 days of data). Missing values are filled 
using the most frequent value of each feature, and the data is normalized by subtracting the mean and dividing 
by the standard deviation.

Following the recurrent layers are several dense layers with linear output. Although mathematically these do 
not change the expressiveness of the model (because any composition of linear functions can be replaced with a 
single linear function), they may affect the convergence behavior or the initial state.

7.2.  Second Place Model Architecture and Data Pre-Processing

The model is a convolutional neural network with an architecture designed to give more importance to later 
points of the time series, while also capturing larger-scale patterns over the whole series. The network consists 
of a set of convolutional layers which detect patterns at progressively longer periods. Following all the convo-
lutional layers is a layer that concatenates the last data point of each of the convolution outputs. This concat-
enation is then fed into a dense layer. The idea of taking the last data point of each convolution is that it 
represents the patterns at different time spans leading up to the prediction time: for example, the last data point 
of the first layer gives the features of the hour before the prediction time, then the second layer gives the last 
6 hr, etc.

The architecture is somewhat similar to a widely used architecture for image segmentation, the U-Net introduced 
by Ronneberger et al. (2015). The U-Net consists of a “contracting path,” a series of convolutional layers that 
condense the image, followed by an “expansive path” of up-convolution layers that expand the outputs back to 
the scale of the original image. Combining small-scale and large-scale features allows the network to make local-
ized predictions that also take account of larger surrounding patterns. The idea is also similar to the Temporal 
Convolutional Network described by Bai et al. (2018); however, their architecture uses residual (i.e., additive) 
connections to blend the low-level and high-level features, rather than concatenations.

Missing data is filled by linear interpolation (to reduce noise, the interpolation uses a smoothed rolling aver-
age, rather than just the two points immediately before and after the missing part). Features are normalized 
by subtracting the median and dividing by the interquartile range (this approach is used rather than the more 
usual mean and standard deviation because some variables have asymmetric distributions with long tails). 
Data is aggregated in 10-min increments, taking the mean and standard deviation of each feature in the 
increment.

The final model is an ensemble of five models with the same structure, trained on different subsets of the data. 
Separate models are trained for times t and t + 1, yielding 10 models in total. This ensemble averaging is a 
common technique in ML. The idea is that each model only imperfectly captures the “true” relationship between 
the input and output variables, and partly fits noise in the training data. But if we average several models, the 
random noise components will approximately cancel each other out, leaving a more accurate prediction of the 
true relationship. We will touch on this idea when we evaluate the models later in the paper.

7.3.  Third Place Model Architecture and Data Pre-Processing

The model is an ensemble of a tree-boosting model and two neural networks. There are many engineered features, 
including some derived from the Fourier transform of the time series. For all three models, the model is trained 
twice. After the first training, insignificant features were identified and removed before training the final model. 
Each feature's importance is evaluated by using the model to predict a synthetic data set where that feature's 
values have been randomly permuted, then measuring the difference in the loss function (a technique used in 
XAI).

The tree-boosting model is implemented in a Light Gradient Boosting Machine (LightGBM, Ke et al., 2017), 
while the neural networks are implemented in PyTorch. Both neural networks are dense feed-forward architec-
tures with two layers, using rectified linear activations. The final result is scaled using a sigmoid function so that 
the minimum and maximum predictions exceed the training data's minimum and maximum by a factor of at most 
1.2. The two neural network models are identical except for the number of neurons used in the dense layers (50 
and 100).
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7.4.  Fourth Place Model Architecture and Data Pre-Processing

The model is an ensemble of 21 convolutional neural network models. The cells have leaky rectified linear 
activation, and max pooling is used after each convolution to reduce the size of the output. The network has 
a skip-connection that concatenates the last timestep of the input with the output of the convolutional part 
of the network, before the final output layers (using a similar idea to the structure used in the second-place 
model).

Features are aggregated by hour, and the mean and standard deviation are calculated for each period. The last 
96 hr (i.e., 4 days) are used in the model. Missing features are filled by interpolation, and data is normalized by 
subtracting the mean and dividing by the standard deviation.

The models are trained using a custom loss function with parameter p, calculated as follows:

Loss = |𝑦𝑦predicted − 𝑦𝑦true| +

(

log2

(

(

𝑦𝑦predicted − 𝑦𝑦true

)2
+ 1

))𝑝𝑝

� (2)

When p = 2, the second term of the loss is similar to the mean squared error. Higher values of p penalize outliers 
more heavily. This effect arises from the specific formulation of the second term in the loss function. Intuitively, 
this behavior can be understood as an increased sensitivity to extreme errors. With higher values of p, the loss 
function assigns more significance to the squared difference between the predicted and true values, amplifying 
the penalty for outliers. This emphasizes the model's focus on reducing large errors and improving its perfor-
mance on extreme data points.

The ensemble consists of 21 models trained using the above loss function with p values of 1.5, 2.4, and 2.5; and 
7 different random seeds.

Figure 8.  Left panels. A comparison of the observed Dst values and model predictions for the 20–23 November 2003 
geomagnetic storm. The middle and lower panels show a comparison of Real-Time Solar Wind (RTSW) (1 min) and OMNI 
(1 hr) data for the same period. The models use the RTSW data. The right panel shows the same data for the 15 July 2012, 
geomagnetic storm.
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7.5.  Performance of the Models

Figure 8, left panel, compares the final Dst values during the major geomagnetic storm of 20–23 November 2003, 
with predictions made by the top four models and their ensemble average. This storm was the largest of solar 
cycle 23, with a Dst index peak value of −422 nT. However, during this event, the Solar Wind Electron Proton 
Alpha Monitor (SWEPAM; McComas et al., 1998) of the ACE satellite was overwhelmed by high-energy solar 
particles, and a communication error caused a data gap before the main event (Fernandez-Gomez et al., 2019). 
Due to a combination of these issues, the RTSW plasma data (density, velocity, and electron temperature) 
had major gaps lasting more than a day before the onset of the storm and smaller gaps during the evolution 
of this storm (Posner et al., 2014). The missing plasma data were later reconstructed with the NASA-OMNI 
post-processing (Fernandez-Gomez et al., 2019; Skoug et al., 2004), introducing clear differences between the 
operational (RTSW) and research (OMNI) magnetospheric inputs. At the time of the event, the only available 
data would have been the RTSW data. The models used the RTSW data to predict the Dst values, gaps filled 
by pre-processing or interpolation as defined in Sections 7.2–7.6. Despite these issues, the models performed 
reasonably well. On the right panels of the figure, model predictions, and key solar wind data are shown for the 
moderate geomagnetic storm of 14–17 July 2012, during which ACE data was complete throughout the storm 
period.

Figure 9 presents the overall metrics of the models. The left panel displays the RMSE of the model predictions 
against the test data in both the public and private leaderboards. The models were ranked according to their 
performance against the private data. It is worth noting that for the same models, the public data set had slightly 
larger errors compared to the private data set, which can be attributed to the presence of a greater number of 
geomagnetic storms in the public data set. It is important to recall that the private and public data sets are distinct 
from each other, and only the public data set was provided to the competition participants. The average of the top 
four models had lower errors than any of the individual models, while the benchmark model had significantly 
higher errors, as expected since it was designed as a beginner model to guide participants. The right panels show 
the corresponding model performances during geomagnetically active (defined as Dst values less than −80 nT) 
and quiet periods in the private data set. The performance of the models during active periods is slightly different 
from their overall performance. For instance, the third-place model has the lowest errors (38.2 nT), slightly lower 
than the models in the first and second places.

7.6.  Independent Validation of the Models

The top four models in the challenge were validated by the NCEI/CIRES members before announcing the 
winners. This step served two main purposes: (a) to ensure that the winning models followed the competition 
rules and (b) to assess their suitability for NCEI operational use. The validation involved the following compo-
nents. First, we ensured that the model software and documentation were sufficient for the task. Additionally, 
we checked the model software for any suspicious activity (e.g., sourcing data external to the data officially 
provided to all the participants). We then evaluated the models against data collected after the competition 
(from 20 November 2020 to 18 March 2021) using the RTSW data from SWPC and the Quicklook Dst from 

Figure 9.  MagNet top models root mean square error (RMSE) scores (vertical axes; lower is better). The left figure shows RMSE on public (dark blue) and private 
(light blue) for the ensemble of all four top models, each model independently and the original benchmark model. The right figure is the same layout with each model's 
RMSE score for extreme Dst < −80 nT (dark blue) and for overall private test (light blue) periods.
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WDC Kyoto. We found that the relative performance of the models was similar to that on the private leader-
board. We then trained the models on the public data set and reproduced the error metrics, obtaining RMSE 
errors close to the leaderboard numbers. The small differences could be explained by the random initialization 
of the model coefficients and the randomness of the optimization method used in the models. Considering 
these variabilities, it is reassuring to see that the retrained models are producing the same error metrics as in 
their competition leaderboard. We then trained the models against all the provided data to the competition 
(private + public) and then evaluated the models against the post-competition data. In this case, we find some 
changes to the performance ranking with the RMSE errors of the first and third models increasing by 0.22 nT. 
We also notice that the time taken to train the models by NCEI/CIRES using public data varied significantly 
from what is documented by the model developers. For the first and third models, the training time doubled. 
The fourth-place model took 12 hr to complete the training (given a prior estimate of 40 min). However, the 
inference time for a single-step prediction (t0 and t+1) took only less than a minute for all the models. Table 6 
summarizes our validation results.

7.7.  Post-Competition Evaluation of the Models

A more meaningful evaluation of the model is to evaluate them over a sufficiently long time series collected 
after the competition phase. Ideally, this period of evaluation should have several large geomagnetic storms 
resulting in several periods where Dst values are less than −100 nT. However, as we write this paper, we are 
at the beginning of the solar cycle 25 with rare occurrences of larger geomagnetic storms. We use RTSW data 
and Dst (“Quicklook”) collected after the conclusion of the competition for a second evaluation of the top 
four models. Specifically, we use the data collected from March 2021 through May 2022. The models were 
used to predict 9,990 hourly values of Dst using the RTSW data. Provisional Dst data were available up to 
the end of 2021, and for the rest of the period, we used the Quicklook Dst data. In this period, we had five 
geomagnetic storms with Dst values below −80 nT and the biggest storm was on 4 November 2021. As an 
external benchmark model, we chose the empirical model “LASP” by Temerin and Li (2002) for the following 
reasons. The “LASP” model does not use historical Dst values to predict future Dst values. It is solely reliant on 
solar wind data for Dst prediction. We downloaded the real-time model values from https://lasp.colorado.edu/
space_weather/dsttemerin/dsttemerin.html and they were interpolated to the hourly timestamps of the observed 
Dst values.

Model

Model 
software and 

documentation

Check 
software 

for 
suspicious 

activity

Infer winning 
models against 

new data 
(November '20 
to March '21) 
(RMSE nT)

Train models 
on public data 
to reproduce 

competition RMSE 
nT (NCEI/Solver 

provided)

Train models 
on all 

competition data 
(public + private); 
infer on fresh data

Get training 
times and 

inference times 
(HH:MM 

NCEI/Solver 
provided)

First

(5.85) (11.13/11.13) (6.07) (02:56/1:49)

Second

(5.96) (11.31/11.25) (5.96) (00:19/00:16)

Third

(6.43) (11.35/11.29) (6.65) (04:56/02:00)

Fourth

(6.43) (11.71/11.53) (6.5) (12:00/00:40)

 aNote that the root mean square error (RMSE) numbers refer to the Dst prediction at t0. The marker  indicates a satisfactory 
outcome.

Table 6 
Winning Model Validation Rubric and Results a

https://lasp.colorado.edu/space_weather/dsttemerin/dsttemerin.html
https://lasp.colorado.edu/space_weather/dsttemerin/dsttemerin.html
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Figure 10 shows the model predictions and observations for the period of the evaluation. The models generally 
predict the observed Dst variations correctly. The largest geomagnetic storm happened on 5 November 2021. The 
MagNet models follow the observed Dst values closely in this period. The LASP model shows a large negative 
bias (average mean error of −15.5 nT), as well as over prediction of the peak Dst on 4 November 2021, by about 
100 nT. A part of the bias error of the LASP model may be explained by the fact that we are comparing the 
“QuickLook” Dst, which might be adjusted when provisional or final versions are released.

The data and predictions by the top four models are given in Table 7. For presenting the metrics, we chose to 
separate the RMSE error into standard deviation and mean since the quiet-time baselines of Quicklook Dst values 
are not considered final and we need to determine the mean errors of the models separately. The models generally 
predict the Dst variations at t0 with standard deviations in the range of 7.02–7.64 nT, with very small mean errors. 
The models have slightly larger errors at t1 with a standard deviation range of 7.13–7.79 nT. The predictions are 
highly correlated with the observed Dst data. The ensemble average of the four models has the lowest standard 
deviation error at t0 and t+1 with the observations. The average model also shows the highest correlation coeffi-
cients. This result is consistent with previous studies (e.g., Bojer & Meldgaard, 2021) that showed that ensembles 
of diverse ML models have better prediction accuracy than any individual models. The top four models used 
three different Machine-Learning approaches and data preprocessing methods (see Table 5 and Sections 7.1–7.4). 
Furthermore, the second and fourth models themselves are ensemble averages of 5 and 4 convolutional neural 
networks respectively. We speculate that diverse modeling approaches allow for the ensemble to see more aspects 
of the phenomenon that we try to model than any individual models. The residuals of the LASP model show 

significantly larger standard deviation and mean values. Additionally, the 
model has a smaller correlation with the observed data.

To better understand the models' post-competition performance, their resid-
uals were binned and their errors were examined across different levels of 
geomagnetic activity. In Figure 11 the standard deviation errors are shown as 
a function of magnetic activity, using Dst bin boundaries of (25,0,−5,−10,−1
5,−20,−25,−50,−75,−125), with the number of hourly data points available 
in each bin being (2957,1462,1241,1002,639,432,684,83,19) respectively. 
Generally, the errors of the models increase as the level of geomagnetic activ-
ity rises. For predictions at t0 (left panels) the LASP model had comparable 
errors with the MagNet models for Dst bins centered at −37.5 nT and higher. 
However, the LASP model (green) had significantly higher errors for more 
geomagnetically active periods. The first and second models show slightly 
larger errors than the rest of the MagNet models for moderately active peri-
ods (−37.5 to −62.5 nT) but show signs of reduced errors for the most active 
periods (Dst bin centered on −100 nT). We can make similar observations for 

Figure 10.  Left panel shows Dst observed (blue-green) and predicted by models (blue—an average of four models, 
green-LSAP) over the post-competition period from March 2021 through May 2022. The right panel is zoomed (area in the 
red rectangle) on November 1-10, 2021.

Model

Prediction at t0 Prediction at t1

σ (nT) μ (nT) ⍴ (x,y) σ (nT) μ (nT)
⍴ 

(x,y)

Average (1–4) 6.77 0.97 0.87 6.94 1.46 0.87

First 7.64 1.49 0.85 7.79 1.28 0.84

Second 7.02 1.75 0.87 7.38 0.69 0.86

Third 7.26 0.67 0.85 7.33 0.23 0.85

Fourth 7.04 −0.023 0.86 7.13 0.91 0.85

LASP 9.46 15.528 0.82 – – –

 aMetrics for post-challenge evaluation of models used coefficients provided 
by the solvers. “σ” reflects the standard deviation of the residuals in nanotesla 
(lower is better), and “μ” reflects the mean of the residuals in nanotesla. “⍴” 
reflects the Pearson correlation coefficient between samples (higher is better).

Table 7 
Metrics for Post-Challenge Model Evaluation a
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predictions at t+1, with slightly larger errors for all periods. The average of the MagNet ensemble (cyan) has the 
lowest errors in all periods and for both t0 and t+1.

As briefly introduced in Section 4, XAI is a critical component of ML model development as we strive to understand 
the physical ramifications of a given trained model, that is, its behavior when presented with data it wasn't trained 
on, ultimately avoiding issues associated with “black box” ML models (e.g., McGovern et al., 2019). Insufficiently 
interpretable models are highly unlikely to gain sufficient trust with the target user community to be deployed into 
an operational or decision-making environment. XAI is an active area of research, with new explainability tools 
being rapidly developed by community efforts, such as the scikit-explain Python package (e.g., Chase, Harrison, 
Burke, et al., 2022; Chase, Harrison, Lackmann, & McGovern, 2022; Flora et al., 2022a, 2022b). The independ-
ent evaluations discussed in Sections 7.5 and 7.6 are one facet of explainability. Another is a set of global model 
agnostic interrogations (e.g., Molnar, 2020 their Section 8.5; Fisher et al., 2018). In Figure 12, we have employed a 
technique referred to as permutation feature importance, whereby the inputs (features) are permuted individually, 
to break the relationship between the input (feature) and the correct Dst (outcome). This figure demonstrates the 

Figure 11.  Depicts the root mean square error score (vertical axis) for each of the top four models versus Dst (horizontal 
axis). The traces are first place—solid blue, second—red, third—black, fourth—dashed blue, and ensemble mean—light blue. 
The left figure is prediction at t0 and the right figure is at t+1.

Figure 12.  Feature permutation importance plots for the benchmark Long-Short Term Memory model (left) and the second place model (right). The y-axis is the ratio 
of the root mean square error (RMSE) for each feature to the most important feature (“bz_gsm” in both cases).
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relative effect different input parameters have on the model's ability to predict Dst. We show two cases, the feature 
importance for the benchmark LSTM model versus the second place model. In both cases, the top three most 
important inputs are the z-component of the interplanetary magnetic field (IMF Bz), solar wind speed, and the total 
magnetic field (IMF Bt).

8.  Summary and Conclusion
NOAA's NCEI, in collaboration with the University of Colorado's CIRES and NASA's CoECI, organized an open 
data-science challenge named “MagNet: Model the Geomagnetic Field” to predict Dst in a setup that can be used 
operationally. DrivenData and HeroX implemented the challenge, which drew 622 participants from 64 countries, 
resulting in 1,197 model submissions using various ML approaches. The models were automatically evaluated 
against two portions of solar wind and Dst data using a containerized computing system that simulated a real-time 
modeling environment. The top four winning models, chosen based on their lowest RMSE errors, were further 
evaluated in this paper. These models used different modeling architectures, and the ensemble averages of their 
outputs performed better than individual models for both competition and post-competition data. The models 
were robust against data corruption and outages affecting the ACE plasma sensors during the November 2003 
geomagnetic storm. NCEI re-evaluated the MagNet models by retraining them and evaluating their operational 
performance. The models' performance was comparable to the competition leaderboard metrics. Using RTSW 
data collected after the competition (March 2021 to May 2022), the models' performance was further evaluated 
against the Dst data. We find that the models generally predict the Dst variations at t0 with standard deviations in 
the range of 7.02–7.64 nT, with very small mean errors. The models have slightly larger errors at t1 with a stand-
ard deviation range of 7.13–7.79 nT. Again, the ensemble average scored the least errors against the observations. 
We hope that the MagNet models will serve as a benchmark for improving Dst value forecasts for near real-time 
operational needs and encourage discussions of new model architectures and data pre-processing techniques. 
We have also provided examples of how to create a wrapper around the model so that it can run in a real-time 
containerized environment.

The competition revealed several lessons learned, with notable successes and areas for improvement. Among 
the successes were the well-organized and cleanly prepared data, which enabled broad participation aided by 
challenge coverage, outreach, and useful domain resources provided. Additionally, the benchmark blog post used 
in several winning models was effective, while submission acceptance, containerized execution, and scoring 
were smooth, allowing for the evaluation of over 1,000 models. Steps were taken to discourage misuse of the 
public test data by the obfuscation of time stamps to index, code evaluation, and logs, and testing on unseen 
data. The winner solution validation and sharing were also streamlined by submission requirements. However, 
opportunities for improvement were identified, such as continuing to test models on unseen data, augmenting 
post-challenge testing with data containing more geomagnetic storms, and making benchmark resources more 
ready to use for participant iteration. Finally, the containerized code execution environment proved challenging 
for some participants, resulting in fewer successful submissions.

The primary objective of the competition was to predict Dst values, but the winning model has the potential 
to serve additional purposes for the Space-Physics and Industry communities. By retraining the models using 
RTSW data and the desired output variable, the model can be utilized to forecast other Space-Weather indices.

Data Availability Statement
The models, data, and associated documentation are available from the following websites.

1.	 �The model software for winning solutions from MagNet challenge are publicly available at Ali et al. (2021).
2.	 �The data set used for the competition are available at Nair (2023).
3.	 �Competition website

•	 �Main https://www.drivendata.org/competitions/73/noaa-magnetic-forecasting/.
•	 �Benchmark model https://drivendata.co/blog/model-geomagnetic-field-benchmark/.

4.	 �Tutorials designed based on the winning and benchmark models to help students and early-career researchers 
to explore and improve the models are available at Belinda Trotta (2023).

https://www.drivendata.org/competitions/73/noaa-magnetic-forecasting/
https://drivendata.co/blog/model-geomagnetic-field-benchmark/
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